HOUSE BILL No. 6007

July 8, 1992, Introduced by Rep. Brown and referred to the Committee on Public Health.

A bill to amend sections 7521 and 7525 of Act No. 368 of the Public Acts of 1978, entitled as amended "Public health code,"

.

section 7521 as amended by Act No. 30 of the Public Acts of 1990, being sections 333.7521 and 333.7525 of the Michigan Compiled Laws; and to add section 7402a.

THE PEOPLE OF THE STATE OF MICHIGAN ENACT:

- 1 Section 1. Sections 7521 and 7525 of Act No. 368 of the
- 2 Public Acts of 1978, section 7521 as amended by Act No. 30 of the
- 3 Public Acts of 1990, being sections 333.7521 and 333.7525 of the
- 4 Michigan Compiled Laws, are amended and section 7402a is added to
- 5 read as follows:

00684'91 * TVD

1		
2	· · · · · · · · · · · · · · · · · · ·	
3	SEC. 7402	A. (1) EXCEPT AS AUTHORIZED BY THIS ARTICLE, A PERSON
4	SHALL NOT CI	REATE, DELIVER, OR POSSESS WITH INTENT TO DELIVER ANY
5	OF THE FOLLO	WING:
6	(a) Any comp	ound of the formula
7		
8	CH	3CH2-CH(OR1)-C(R2)2-CHR3-CHR4-N(R5)(R6)
9		e e
10	in which a	ll of the following circumstances exist:
1 1	(i) R ₁ i	s 1 of the following:
1 2	(A)	-Н.
13	(B)	C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
1 4	(C)	C ₁ acyl, C ₂ acyl, C ₃ acyl, or C ₄ acyl.
1 5	(D)	-CO-C6H5, or a substituent that would be -CO-C6H5 except that
16		1, 2, or 3 of the hydrogen atoms of -C6H5 have been replaced
1 7		by a corresponding number of 1 or more of the following:
18		(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
19		(ii) -F.
20		(iii) -Cl.

1	~		(iv) -CF3.			
2	(ii)	R ₂ is	-C6H5, or a substituent that would be -C6H	H5 exc	cept that 1	, 2, or
3		3 of	the hydrogen atoms of -C6H5 have			
4		corres	sponding number of 1 or more of the follow	wing:		
5		(A)	C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.			
6		(B)	-F.			
7		(C)	-Cl.			
8		(D)	-CF3.			
9	(iii)	R ₃ is	1 of the following:			
0		(A)	-Н.			
. 1		(B)	C ₁ alkyl or C ₂ alkyl.		4	
. 2	(iv)	R4 is	1 of the following:	4		
. 3		(A)	-Н.		1	
. 4		(B)	C ₁ alkyl or C ₂ alkyl.	, -	4 . /.	
. 5	(v)	Eithe	r of the following circumstances exists:			
6		(A)	All of the following circumstances exist:			
. 7		(i) R5 is 1 of the following:		4	
. 8			(a) -H.	į.		
9			(b) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl			
) N			(c) -CH2-CH=CH2			

1	attacher in	(ii) R6 is	1 of the following:
2		(a)	-Н.
3		(b)	C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
4		(c)	-CH ₂ -CH=CH ₂ .
5		(d)	C ₁ acyl, C ₂ acyl, C ₃ acyl, or C ₄ acyl.
6		(e)	-CO-C6H5, or a substituent that would be -CO-C6H5
7		3	except that 1, 2, or 3 of the hydrogen atoms of
8	1.2	1.	-C6H5 have been replaced by a corresponding
9			number of 1 or more of the following:
10			(i) C1 alkyl, C2 alkyl, or C3 alkyl.
1 1			(ii) -F.
1 2			(iii) -Cl.
13			(iv) -CF3.
1 4	(B)	R5 and R	6 are taken together with the attached nitrogen atom to
1 5		form a he	terocyclic ring that is 1 of the following:
16		(i) 1-p	yrrolidinyl.
17		(ii) 1-p	iperidinyl.
18		(iii) 1-n	norpholinyl.
19		(iv) 1-p	iperazinyl.

			2					
1	(v)	A subst	tituent that	would l	pe 1-pi	perazi	nylexcep	ot that the
2		hydroge	en atom at	the fou	rth pos	ition	of 1-pipe	razinyl is
3		replace	d by 1 of th	he follow	ving:			
4		(a) C ₁	alkyl, C2	alkyl, or	C ₃ all	kyl.		
5		(b) 2-p	yridinyl, 3	3-pyridin	yl, or	4-pyri	dinyl.	
6		(c) 2-p	yrimidiny	l or 4-py	rimidi	nyl.		
7		(d) -C	6H5, or a	substitue	nt that	would	i be -C6F	15 except
8		tha	t 1, 2, or 3	3 of the 1	nydroge	en ato	ms of -C	6H5 have
9		bee	en replace	d by a	corresp	ondin	g numbe	r of 1 or
10		mo	ore of the f	ollowing	; .			
11		(i)	C ₁ alkyl	, C2 alky	l, or C	3 alky	1.	
12		(ii)	-F.					
13		(iii	i) -Cl.					
1 4		(iv) -CF3.				, ,,	
1 5								
16								
17							ф Х Х	
18			-				· · ·	
19								ì

(b) Any compound of the formula

3

4

5

- 7 in which all of the following circumstances exist:
- 8 (i) n₁ is 1 or 2. When n is 2, a methylene group is added to the ring
- 9 expanding it from a 6-member ring to a 7-member ring.
- 10 (ii) R₁ is alpha-R₁₋₁:beta-R₁₋₂ in which one of R₁₋₁ or R₁₋₂ is -H and
 11 the other of R₁₋₁ or R₁₋₂ is -H or C₁ alkyl or C₂ alkyl.
- 12 (iii) R2 is 1 of the following:
- 13 (A) -H.
- 1 4 (B) C₁ alkyl, C₂ alkyl, or C₃ alkyl.
- 15 (C) -CH2-CH=CH2.

1		(D) C ₁ acyl, C ₂ acyl, C ₃ acyl, or C ₄ acyl.
2		(E) $-(CH_2)_{n_2}-R_{2-1}$ in which all of the following circumstances exist:
3		(i) n ₂ is 1, 2, 3, or 4.
4		(ii) R ₂₋₁ is -C ₆ H ₅ , or a substituent that would be -C ₆ H ₅ except
5		that 1, 2, or 3 of the hydrogen atoms of -C6H5 have been
6		replaced by a corresponding number of 1 or more of the
7		following:
8		(a) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
9		(b) -F.
10		(c) -Cl.
1 1		(d) -CF3.
1 2	(iv)	Either of the following circumstances exists:
13		(A) R3 is R3-1:R3-2 and R4 is R4-1:R4-2 in which one of R3-1 or
1 4		R3-2 is taken together with one of R4-1 or R4-2 to form a
15		double bond between the carbon atoms to which they are
16		attached, the other of R3-1 or R3-2 is 2-thienyl or -C6H5, and
17		the other of R4-1 or R4-2 is -H.
18		(B) R3 is R3-3:R3-4, R4 is alpha-R4-3: beta-R4-4, and all of the

following circumstances exist:

1	(i)	R ₃₋₃ is -C ₆ H ₅ , or a substituent that would be -C ₆ H ₅ except
2		that 1, 2, or 3 of the hydrogen atoms of -C6H5 have been
3		replaced by a corresponding number of 1 or more of the
4	411 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	following:
5		(a) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
6	4.7	(b) -F.
7		(c) -Cl.
8		(d) -CF3.
9	(ii)	R3-4 is 1 of the following:
10		(a) -OH.
1 1		(b) -O-R3-5 in which R3-5 is 1 of the following:
12		(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
13		(ii) C ₁ acyl, C ₂ acyl, C ₃ acyl, or C ₄ acyl.
1 4		(iii) -CO-(CH ₂) $_{n_3}$ -C ₆ H ₅ in which n ₃ is 1, 2, 3, or 4,
1 5		or a substituent that would be -CO-(CH ₂) _{n3} -C ₆ H ₅
16		in which n3 is 1, 2, 3, or 4 except that 1, 2, or 3
1 7		of the hydrogen atoms of -C6H5 have been
18	of and the	replaced by a corresponding number of 1 or more
19	47	of the following:
20		(A) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.

1	(B) -F.
2	(C) -C1.
3	(D) -CF3.
4	(iii) One of R4-3 or R4-4 is -H and the other of R4-3 or R4-4
5	is 1 of the following:
6	(a) C ₁ alkyl, C ₂ alkyl, C ₃ alkyl, C ₄ alkyl, C ₅ alkyl, or
7	C6 alkyl.
8	(b) -CH2-CH=CH2.
9	(c) -CH2-CH=CH-CH3.
10	
11	(c) Any compound of the formula
12	
13	R ₁ -C(R ₂)(R ₃)-CHR ₄ -CHR ₅ -N(R ₆)(R ₇)
14	
15	in which all of the following circumstances exist:
16	(i) R ₁ is any of the following:
17	(A) -CN.
18	(B) -O-CO-R ₁₋₁ , in which R ₁₋₁ is C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
19	(C) -CO-R ₁₋₂ in which R ₁₋₂ is 1 of the following:
20	(i) -H.

1	(ii)	C 1	alkyl, C2 alkyl, or C3 alkyl.
2	(iii)	-O-	R ₁₋₃ in which R ₁₋₃ is 1 of the following:
3	. Fice (50, 5°, 6	(a)	-Н.
4	1 2	(b)	C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
5	(iv)	-N(R ₁₋₄)(R ₁₋₅) in which either of the following circumstances
6	4. 4.	exis	ets:
7	· · · · · · · · · · · · · · · · · · ·	(a)	R ₁₋₄ and R ₁₋₅ are the same or different but each is 1 of the
8			following:
9			(i) -H.
10			(ii) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
11			(iii) -CH2-CH=CH2.
1 2		(b)	R ₁₋₄ and R ₁₋₅ are taken together with the attached nitrogen
13			atom to form a heterocyclic ring that is 1 of the following:
1 4	y e to e to		(i) 1-pyrrolidinyl.
15	<u>.</u>		(ii) 1-piperidinyl.
16			(iii) 1-morpholinyl.
17			(iv) 1-piperazinyl.
18			(v) A substituent that would be 1-piperazinyl except that
19			the hydrogen atom at the fourth position of
20			1-piperazinyl is replaced by 1 of the following:

1	(A) -H.	1
2	(B) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.	ζ,
3	(C) 2-pyridinyl, 3-pyridinyl, or 4-pyridinyl.	,C
4	(D) 2-pyrimidinyl or 4-pyrimidinyl.	.2.
5	(E) C6H5, or a substituent that would be -C6H5 except	
6	that 1, 2, or 3 of the hydrogen atoms of -C6H5	
7	have been replaced by a corresponding number of	
8	1 or more of the following:	
9	(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.	
l 0	(ii) -F.	
l 1	(iii) -Cl.	:
l 2	(iv) -CF3.	
l 3 (ii)	R2 is -C6H5, or a substituent that would be -C6H5 except that 1, 2, or	
1 4	3 of the hydrogen atoms of -C6H5 have been replaced by a	;
15	corresponding number of 1 or more of the following:	
16	(A) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.	?
17	(B) -F.	;
184. 3920	(C) -Cl.	
19 6 5	(D) -CF3.	: ;

. ;

(iii) R3 is -CH2-C6H5, or a substituent that would be -CH2-C6H5 except 1 that 1, 2, or 3 of the hydrogen atoms of -C6H5 have been replaced by 2 a corresponding number of 1 or more of the following: 3 (A) C₁ alkyl, C₂ alkyl, or C₃ alkyl. 4 (B) -F. 5 6 (C) -C1. (D) -CF3. 7 (iv) R4 is 1 of the following: 8 (A) 9 -H. C₁ alkyl or C₂ alkyl. **(B)** 10 R5 is 1 of the following: 11 (v) (A) -H. 12 (B) C₁ alkyl or C₂ alkyl. 13 (vi) Either of the following circumstances exists: 14 (A) R6 and R7 are the same or different but each is 1 of the 15 following: 16 (i) -H. 17 (ii) C₁ alkyl, C₂ alkyl, or C₃ alkyl. 18 (iii) -CH2-CH=CH2. 19

1	- Y	(B)	R6 and R7 are taken together with the attached nitrogen atom to
2			form a heterocyclic ring that is 1 of the following:
3		•	(i) 1-pyrrolidinyl.
4			(ii) 1-piperidinyl.
5			(iii) 1-morpholinyl.
6			(iv) 1-piperazinyl.
7			(v) A substituent that would be 1-piperazinyl except that the
8			hydrogen atom at the fourth position of 1-piperazinyl is
9			replaced by 1 of the following:
10			(a) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
11			(b) 2-pyridinyl, 3-pyridinyl, or 4-pyridinyl.
1 2			(c) 2-pyrimidinyl or 4-pyrimidinyl.
13			(d) -C6H5, or a substituent that would be -C6H5 except
1 4			that 1, 2, or 3 of the hydrogen atoms of -C6H5 have
1 5			been replaced by a corresponding number of 1 or
16			more of the following:
17			(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
18			(ii) -F.
19			(iii) -Cl.
20			(iv) -CF3.

```
(d) Any compound of the formula
                        and the state of the state of the state of
 2
                      R<sub>1</sub>-O-C(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>-COO-CHR<sub>2</sub>-CHR<sub>3</sub>-N(R<sub>4</sub>)(R<sub>5</sub>)
 3
 4
           in which all of the following circumstances exist:
 5
           (i)
                   R<sub>1</sub> is 1 of the following:
 6
 7
                  (A) -H.
                   (B) C<sub>1</sub> alkyl, C<sub>2</sub> alkyl, or C<sub>3</sub> alkyl.
 8
                  R2 is 1 of the following:
 9
           (ii)
                   (A) -H.
10
                   (B) C<sub>1</sub> alkyl or C<sub>2</sub> alkyl.
11
                  R3 is 1 of the following:
12
           (iii)
13 (A) -H.
               (B) C<sub>1</sub> alkyl or C<sub>2</sub> alkyl.
14
           (iv) Either of the following circumstances exists:
15
                   (A) R4 and R5 are the same or different but each is 1 of the
16
                         following:
17
18
                         (i) -H.
                         (ii) C<sub>1</sub> alkyl, C<sub>2</sub> alkyl, or C<sub>3</sub> alkyl.
19
                         (iii) -CH2-CH=CH2.
20
```

1	(B) R4 and R5 are taken together with the attached nitrogen atom to	
2	form a heterocyclic ring that is 1 of the following:	
3	(i) 1-pyrrolidinyl.	
4	(ii) 1-piperidinyl.	
5	(iii) 1-morpholinyl.	
6	(iv) 1-piperazinyl.	
7	(v) A substituent that would be 1-piperazinyl except that the	
8	hydrogen atom at the fourth position of 1-piperazinyl is	
9	replaced by 1 of the following:	
10	(a) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.	•
11	(b) 2-pyridinyl, 3-pyridinyl, or 4-pyridinyl.	
1 2	(c) 2-pyrimidinyl or 4-pyrimidinyl.	
13	(d) -C6H5, or a substituent that would be -C6H5 except that 1,	2,
1 4	3 of the hydrogen atoms of -C6H5 have been replaced	by
15	corresponding number of 1 or more of the following:	
16	(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.	
17	(ii) -F.	
18	(iii) -Cl.	ž
19	(iv) -CF3.	
20		

1 (e) Any compound of the formula

2

3

4

5 in which all of the following circumstances exist:

6

- 7 (i) R₁ is any of the following:
- 8
- (A) -H.
- 9
- (B) C₁ alkyl, C₂ alkyl, or C₃ alkyl.
- 10
- (C) -CH₂-CH=CH₂.
- 11
- (D) C₁ acyl, C₂ acyl, C₃ acyl, or C₄ acyl.
- 12
- (E) -CO-CH₂-C₆H₅, or a substituent that would be -CO-CH₂-C₆H₅
- 13

except that 1, 2, or 3 of the hydrogen atoms of -C6H5 have been replaced by a corresponding number of 1 or more of the

- 1 4 1 5
- following:

1		(i) C ₁	alkyl, C2 alkyl, or C3 alkyl.
2		(ii) -F.	
3		(iii) -Cl.	•
4		(iv) -CF	?3.
5	(F)	-(CH ₂) ₁	n_1 -O-(CH ₂) n_2 -R ₁₋₁ in which all of the following
6		circumst	tances exist:
7		(i) n ₁ i	is 1, 2, 3, or 4.
8		(ii) n ₂ i	is 1, 2, 3, or 4.
9		(iii) R ₁ -	1 is 1 of the following:
10		(a)	2-tetrahydrofuranyl or 3-tetrahydrofuranyl.
11		(b)	2-tetrahydropyranyl, 3-tetrahydropyranyl, or
12			4-tetrahydropyranyl.
13		(c)	-C6H5, or a substituent that would be -C6H5 except
14			that 1, 2, or 3 of the hydrogen atoms of -C6H5 have
15			been replaced by a corresponding number of 1 or
16			more of the following:
17	10.54 10.54 10.55		(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
18	W 44.4		(ii) -F.
19			(iii) -Cl.
20			(iv) -CF3.

1	by the property (v) -O-R ₁₋₂ in which R ₁₋₂ is 1 of the following:
2	1. 1. a. 1. p. 1. p. 1. (A)H.
3	(B) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
4	(C) C ₁ acyl, C ₂ acyl, C ₃ acyl, or C ₄ acyl.
5	(G) $-(CH_2)_{n_3}-N(R_{1-3})(R_{1-4})$ in which all of the following
6	circumstances exist:
7	(i) n3 is 1, 2, 3, or 4.
8	(ii) Either of the following circumstances exists:
9	(a) All of the following circumstances exist:
10	(i) R ₁₋₃ is 1 of the following:
11	(A) -H.
12	(B) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
13	(C) -CH ₂ -CH=CH ₂ .
1 4	(D) -C ₆ H ₅ .
15	(ii) R ₁₋₄ is 1 of the following:
16	(A) -H.
17	(B) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
18	(C) -CH2-CH=CH2.

1	(b)	R ₁₋₃ and R ₁₋₄ are taken together with the attached	1
2		nitrogen atom to form a heterocyclic ring that is 1 of	4
3	17.5	the following:	. "
4	$i \not = i - i - i - i$	(i) 1-pyrrolidinyl.	;
5		(ii) 1-piperidinyl.	
6		(iii) 1-morpholinyl.	
7		(iv) 1-piperazinyl.	
8		(v) A substituent that would be 1-piperazinyl except	,
9		that the hyrdogen atom at the fourth position of	
10		1-piperazinyl is replaced by 1 of the following:	2
1 1		(A) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.	,
12	, i	(B) 2-pyridinyl, 3-pyridinyl, or 4-pyridinyl.	
13		(C) 2-pyrimidinyl or 4-pyrimidinyl.	1,
1 4		(D) -C6H5, or a substituent that would be -C6H5	r
1 5		except that 1, 2, or 3 of the hydrogen atoms	•
16		of -C6H5 have been replaced by a	,3,
1 7		corresponding number of 1 or more of the	1
18		following:	ç ^į
19		(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.	
20		(ii) -F.	

1	(iii) -Cl.
2	(iv) -CF3.
3	(H) $-(CH_2)_{n_4}-C(R_{1-5})(R_{1-6})(R_{1-7})$ in which all of the following
4	circumstances exist:
5	(i) n4 is 1, 2, 3, or 4.
6	(ii) R ₁₋₅ and R ₁₋₆ are the same or different but each is 1 of the
7	following:
8	(a) -H.
9	(b) -C6H5, or a substituent that would be -C6H5 except
10	that 1, 2, or 3 of the hydrogen atoms of -C6H5 have
1 1	been replaced by a corresponding number of 1 or
12	more of the following:
13	(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
1 4	(ii) -F.
15	(iii) -Cl.
16	(iv) -CF3.
1 7	(iii) R ₁₋₇ is 1 of the following:
18	(a) -CN.
19	(b) -O-R ₁₋₈ in which R ₁₋₈ is 1 of the following:
20	(i) -H.

1			(11) C1 alkyl, C2 all	tyl, or C3 alkyl.
2			(iii) C ₁ acyl, C ₂ acy	l, C3 acyl, or C4 acyl.
3	i	(c)	-C6H5, or a substitu	uent that would be -C6H5 except
4			that 1, 2, or 3 of the	e hydrogen atoms of -C6H5 have
5			been replaced by a	corresponding number of 1 or
6			more of the followin	g:
7			(i) C ₁ alkyl, C ₂ alk	kyl, or C3 alkyl.
8			(ii) -F.	
9			(iii) -Cl.	•
10			(iv) -CF3.	
1 1			(v) -NH2.	
1 2	(ii)	R ₂ is -C ₆ H ₅ ,	or a substituent that w	ould be -C6H5 except that 1, 2, or
1 3		3 of the hyd	lrogen atoms of -C	6H5 have been replaced by a
1 4		corresponding	number of 1 or more	of the following:
1 5		(A) C ₁ alkyl,	C2 alkyl, or C3 alkyl.	
1 6		(B) -F.		
1 7		(C) -Cl.	13.5.5	
1 8		(D) -CF3.		5
1 9		(E) -O-R2-1; i	n which R ₁₂ is 1 of th	e following:
20		(i) -H.		4.5

ť.;

1	(ii) C1	alkyl or C ₂ alkyl.			
2	(iii) C1 acyl, C2 acyl, or C3 acyl.				
3	(iv) -N	(R2-2)(R2-3) in which either of the following			
4	ंग कार १३ अध्यक्ष मा circ	cumstances exists:			
5	(a)	R2-2and R2-3 are the same or different, but each is 1 of			
6		the following:			
7		(i) -H.			
8		(ii) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.			
9		(iii) -CH2-CH=CH2.			
10	(b)	R2-2 and R2-3 are taken together with the attached			
11		nitrogen atom to form a heterocyclic ring that is 1 of			
12		the following:			
13		(i) 1-pyrrolidinyl.			
1 4		(ii) 1-piperidinyl.			
15		(iii) 1-morpholinyl.			
, 16		(iv) 1-piperazinyl.			
17		(v) A substituent that would be 1-piperazinyl except			
18		that the hydrogen atom at the fourth position of			
19	in the state of th	1-piperazinyl is replaced by 1 of the following:			
20		(A) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.			

1	(B) 2-pyridinyl, 3-pyridinyl, or 4-pyridinyl.	
2	(C) 2-pyrimidinyl or 4-pyrimidinyl.	
3	(D) -C ₆ H ₅ , or a substituent that would be -C ₆ H ₅	
4	except that 1, 2, or 3 of the hydrogen atoms of	
5	-C6H5 have been replaced by a corresponding	
6	number of 1 or more of the following:	
7	(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.	
8	(ii) -F.	
9	(iii) -Cl.	
0	(iv) -CF3.	
l 1	(iii) R3 is 1 of the following:	2
1 2	(A) -CN.	
1 3	(B) -CO-R ₃₋₁ in which R ₃₋₁ is 1 of the following:	* ,
1 4	(i) -OH.	
1 5	(ii) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.	.:
1 6	(iii) C ₁ alkoxy, C ₂ alkoxy, C ₃ alkoxy, or C ₄ alkoxy.	
1 7	(iv) -N(R3-2)(R3-3) in which either of the following	ø
18	circumstances exists:	7.
1 9	(a) R ₃₋₂ and R ₃₋₃ are the same or different, but each is 1	
20	of the following:	*

1	1 2 42		(i) -H.
2			(ii) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
3			(iii) -CH2-CH=CH2.
4	(t	o)	R ₃₋₂ and R ₃₋₃ are taken together with the attached
5			nitrogen atom to form a heterocyclic ring that is 1 of
6			the following:
7			(i) 1-pyrrolidinyl.
8			(ii) 1-piperidinyl.
9			(iii) 1-morpholinyl.
10			(iv) 1-piperazinyl.
1 1			(v) A substituent that would be 1-piperazinyl except that the
1 2			hyrdogen atom at the fourth position of 1-piperazinyl is
1 3			replaced by 1 of the following:
1 4			(A) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
1 5			(B) 2-pyridinyl, 3-pyridinyl, or 4-pyridinyl.
16			(C) 2-pyrimidinyl or 4-pyrimidinyl.
17			(D) -C6H5, or a substituent that would be -C6H5 except
1 8	is the first of the const		that 1, 2, or 3 of the hydrogen atoms of -C6H5
19			have been replaced by a corresponding number of 1
20			or more of the following:

(i) C₁ alkyl, C₂ alkyl, or C₃ alkyl.

2

(ii) -F.

3

(iii) -**Q**.

4

(iv) -CF3.

5

6

7

Any compound of the formula

9

10

in which all of the following circumstances exist: 11

12

(i) n₁ is 1, 2, 3, or 4.

13 (ii) n2 is 1, 2, 3, or 4.

14 (iii) Either of the following circumstances exists:

15 (A) R₁ and R₂ are the same or different, but each is 1 of the

16

following:

1	(i) -H.
2	(ii) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
3	(iii) -CH2-CH=CH2.
4	(B) R1 and R2 are taken together with the attached nitrogen atom to
5	form a heterocyclic ring that is 1 of the following:
6	(i) 1-pyrrolidinyl.
7	(ii) 1-piperidinyl.
8	(iii) 1-morpholinyl.
9	(iv) 1-piperazinyl.
10	(v) A substituent that would be 1-piperazinyl except that the
1 1	hyroden atom at the fourth position of 1-piperazinyl is
12	replaced by 1 of the following:
13	(a) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
1 4	(b) 2-pyridinyl, 3-pyridinyl, or 4-pyridinyl.
1 5	(c) 2-pyrimidinyl or 4-pyrimidinyl.
16	(d) -C6H5, or a substituent that would be -C6H5 except that 1,
17	2, or 3 of the hydrogen atoms of -C6H5 have been replaced
18	by a corresponding number of 1 or more of the following:
19	(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
20	(ii) -F.

1	(iii) -Cl.				
2	(iv) -CF3.				
3	(iv) R3 is -C6H5, or a substituent that would be -C6H5 except that 1, 2,				
4	or 3 of the hydrogen atoms of -C6H5 have been replaced by a				
5	corresponding number of 1 or more of the following:				
6	(A) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.				
7	(B) -F.				
8	(C) -Cl.				
9	(D) -CF ₃ .				
, 0	(E) -O-R ₃₋₁ in which R ₃₋₁ is 1 of the following:				
l 1	(i) -H.				
l 2	(ii) C ₁ alkyl or C ₂ alkyl.				
l 3	(iii) C ₁ acyl, C ₂ acyl, or C ₃ acyl.				
l 4					
l 5	(g) Any compound of the formula				
l 6					
17 R1-CO-N(R2)(R3)					
l 8	g market was a second of the s				
l 9	in which all of the following circumstances exist:				

(i) R₁ is C₁ alkyl, C₂ alkyl, or C₃ alkyl.

20

15 1

11.

1	(ii)	R2 is 1 of the following:
2	((A) 2-pyridinyl, 3-pyridinyl, or 4-pyridinyl.
3		(B) 2-pyrimidinyl or 4-pyrimidinyl.
4		(C) -C6H5, or a substituent that would be -C6H5 except that 1, 2, or
5		3 of the hydrogen atoms of -C6H5 have been replaced by a
6	2	corresponding number of 1 or more of the following:
7	,	(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
8		(ii) -F.
9		(iii) -Cl.
10		(iv) -CF3.
11	(iii)	R3 is $-C(H)(R_{3-1})-C(H)(R_{3-2})-N(R_{3-3})(R_{3-4})$ in which all of the
12		following circumstances exist:
13		(A) R3-1 is 1 of the following:
14		(i) -H.
15	÷	(ii) C ₁ alkyl or C ₂ alkyl.
16		(B) R ₃₋₂ is 1 of the following:
17		(i) -H.
18		(ii) C ₁ alkyl or C ₂ alkyl.
19		(C) Either of the following circumstances exists:

1	(i) R	23-3 and R3-4 are the same or diff	erent, but each is 1 of
2	tl	ne following:	r sy to est e
3	(8	а) -Н.	1,745,74
4	. (1	b) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.	
5	(6	c) -CH2-CH=CH2.	
6	((d) $-(CH_2)_{n_1}-C_6H_5$ in which r	11 is 1, 2, or 3, or a
7		substituent that would be -(CH2	$)_{n_1}$ -C6H5 in which n_1
8	6	is 1, 2, or 3 except that 1, 2,	or 3 of the hydrogen
9		atoms of -C6H5 have be	een replaced by a
10		corresponding number of 1 or n	nore of the following:
11		(i) C ₁ alkyl, C ₂ alkyl, or C ₃ al	kyl.
12		(ii) -F.	e pa
13		(iii) -Cl.	
1 4		(iv) -CF3.	
1 5	(ii) R	R3-3 and R3-4 are taken together	er with the attached
16	n	itrogen atom to form a heterocycli	c ring that is 1 of the
17	fo	ollowing:	.**
18	(8	a) 1-pyrrolidinyl.	<i>i</i>
19	-(1	b) 1-piperidinyl.	: · · · · · · · · · · · · · · · · · · ·
20	(6	c) 1-morpholinyl.	

1	((d)	1-pipera	zinyl.	2 1		200
2	((e)	A substi	tuent that	would be	1-piperazinyl ex	cept that the
3			hyrodgei	n atom at	the fourth	position of 1-p	piperazinyl is
4			replaced	by 1 of t	he followin	g:	
5			(i) C ₁	alkyl, C2	alkyl, or C	3 alkyl.	
6			(ii) 2-py	yridinyl,	3-pyridinyl	, or 4-pyridinyl	
7			(iii) 2-py	yrimidiny	l, or 4-pyr	imidinyl.	
8			(iv) -C6	H5, or a	substituent	that would be -	C6H5 except
9			that	1, 2, or 3	3 of the hy	drogen atoms of	-C6H5 have
10			been	n replace	d by a co	rresponding nur	mber of 1 or
1 1			mor	e of the f	following:		
1 2			(a)	C ₁ alky	, C ₂ alkyl,	or C3 alkyl.	
1 3			(b)	-F.			
1 4			(c)	-Cl.			
1 5	## (*		(d)	-CF3.			
16							
1 7						*,	
18			****				•
19							145
20							

1 (h) Any compound of the formula

2

3

4

- in which all of the following circumstances exist:
- 6 (i) R₁ is 1 of the following:
- 7 (A) -H.
- 8 (B) C₁ alkyl, C₂ alkyl, or C₃ alkyl.
- 9 (C) -CH2-CH=CH2.
- 10 (ii) Either of the following circumstances exists:
- 11 (A) R₂ and R₃ are the same or different, but each is 1 of the
- 12 following:
- 13 (i) -H.
- 1 4 (ii) C₁ alkyl, C₂ alkyl, or C₃ alkyl.
- 15 (iii) -CH₂-CH=CH₂.

1	(B) R ₂ an	d R3 are taken together with the attached nitrogen atom to
2	form a	heterocyclic ring that is 1 of the following:
3	(i) 1	-pyrrolidinyl.
4	(ii) 1	-piperidinyl.
5	(iii) 1	-morpholinyl.
6	(iv) 1	-piperazinyl.
7	(v) A	substituent that would be 1-piperazinyl except that the
8	h	ydrogen atom at the fourth position of 1-piperazinyl is
9	re	eplaced by 1 of the following:
10	(8	C1 alkyl, C2 alkyl, or C3 alkyl.
1 1	(1)	o) 2-pyridinyl, 3-pyridinyl, or 4-pyridinyl.
1 2	(0	2-pyrimidinyl or 4-pyrimidinyl.
13	((d) -C6H5, or a substituent that would be -C6H5 except that
1 4		1, 2, or 3 of the hydrogen atoms of -C6H5 have been
1 5		replaced by a corresponding number of 1 or more of
16	3	the following:
17	2004 - 201	(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
18	· 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(ii) -F.
19		(iii) -Cl.
20		(iv) -CF3.

2 (i) Any compound of the formula

3

4

- 5 in which all of the following circumstances exist:
- 6 (i) R₁ is 1 of the following:
- 7 (A) -H.
- 8 (B) C₁ alkyl, C₂ alkyl, or C₃ alkyl.
- 9 (C) -CH₂-CH=CH₂.
- 10 (D) C₁ acyl, C₂ acyl, C₃ acyl, or C₄ acyl.
- (E) -(CH₂)_{n1}-C₆H₅ in which n₁ is 1, 2, 3, or 4, or a substituent that would be -(CH₂)_{n1}-C₆H₅ in which n₁ is 1, 2, 3, or 4 except that 1, 2, or 3 of the hydrogen atoms of -C₆H₅ have been replaced by a corresponding number of 1 or more of the following:
 - (i) C₁ alkyl, C₂ alkyl, or C₃ alkyl.

1	(ii) -F.
2	(iii) -Cl.
3	(iv) -CF3.
4	(F) -(CH ₂) _{n2} -CO-C ₆ H ₅ in which n ₂ is 1, 2, 3, or 4, or a substituent
5	that would be $-(CH_2)_{n_2}$ -CO-C6H ₅ in which n ₂ is 1, 2, 3, or 4
6	except that 1, 2, or 3 of the hydrogen atoms of -C ₆ H ₅ have been
7	replaced by a corresponding number of 1 or more of the
8	following:
9	(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
10	(ii) -F.
1 1	(iii) -Cl.
12	(iv) -CF3.
13	(ii) R2 is 1 of the following:
1 4	(A) -H.
1 5	(B) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
16	(C) C ₁ acyl, C ₂ acyl, C ₃ acyl, or C ₄ acyl.
17	(iii) R3 is 1 of the following:
18	(A) -H.
19	(B) -OH.
20	(C) C ₁ alkoxy, C ₂ alkoxy, or C ₃ alkoxy.

1	(IV) Either of the following circumstances exists.
2	(A) R4 is R4-1:R4-2 and R5 is R5-1:R5-2 in which all of the
3	following circumstances exist:
4	(i) One of R4-1 or R4-2 is taken together with 1 of R5-1 or
5	R5-2 to form a double bond between the carbon atoms to
6	which they are attached.
7	(ii) The other of R4-1 or R4-2 is C1 acyloxy, C2 acyloxy, C3
8	acyloxy, or C4 acyloxy.
9	(iii) The other of R ₅₋₁ or R ₅₋₂ is -H.
. 0	(B) Both of the following circumstances exist:
l 1	(i) R4 is 1 of the following:
2	(a) -H:-H.
l 3	(b) -H: -O-R 4-3 in which R4-3 is 1 of the following:
l 4	(i) -H.
l 5	(ii) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
l 6	(iii) C ₁ acyl, C ₂ acyl, C ₃ acyl, or C ₄ acyl.
l 7	(ii) R5 is -H:-H.
l 8	(v) R6 is 1 of the following:
۱9	(A) ,-H.
20	(B) -OH.

5 :

61

1 2 ---

2 (j) Any compound of the formula

3

4

5 in which all of the following circumstances exist:

6

7 (i) R₁ is 1 of the following:

8

(A) -H.

9

(B) C₁ alkyl, C₂ alkyl, or C₃ alkyl.

10

(C) C₁ acyl, C₂ acyl, C₃ acyl, or C₄ acyl.

11

(D) -CH2-CH=CH2.

12

(E) cyclopropylmethyl.

13

(ii) R2 is 1 of the following:

14

(A) -H.

(B) C₁ alkyl, C₂ alkyl, or C₃ alkyl.

2		(C) C ₁ acyl, C ₂ acyl, C ₃ acyl, or C	C4 acyl. The transaction of the state
3	(iii)	R3 is 1 of the following:	
4		(A) -H.	
5		(B) C ₁ alkyl, C ₂ alkyl, or C ₃ alky	·l.
6		(C) C ₁ acyl, C ₂ acyl, C ₃ acyl, or C	C4 acyl.
7	(iv)	R4 is 1 of the following:	
8		(A) -H.	
9		(B) C ₁ alkyl, C ₂ alkyl, or C ₃ alky	1.
1 0	7	(C) C ₁ acyl, C ₂ acyl, C ₃ acyl, or C	C4 acyl.
1 1	(v)	R5 is 1 of the following:	the section of the section
1 2		(A) -H.	
1 3		(B) C ₁ alkyl, C ₂ alkyl, or C ₃ alky	d. *** ** *****************************
1 4	(vi)	n ₁ is 0, 1, 2, 3, or 4.	
1 5			
1 6			
1 7			
1 8			and the secondary of the
1 9			4.5 16.5 16.5 16.5 15.5 15.5 15.5 15.5 15
2.0			· · · · · · ·

1 (k) Any compound of the formula

2

3

1

5 in which all of the following circumstances exist:

- 7
- (i) R₁ is 1 of the following:
- 8
- (A) -H.
- 9
- (B) C₁ alkyl, C₂ alkyl, or C₃ alkyl.
- 10
- (C) C₁ acyl, C₂ acyl, C₃ acyl, or C₄ acyl.
- 11
- (D) -CH2-CH=CH2.
- 12
- (E) cyclopropylmethyl.
- 13
- (ii) R2 is 1 of the following:
- 14
- (A) -H.

```
(B) C<sub>1</sub> alkyl, C<sub>2</sub> alkyl, or C<sub>3</sub> alkyl.
     1
                                                    (C) C<sub>1</sub> acyl, C<sub>2</sub> acyl, C<sub>3</sub> acyl, or C<sub>4</sub> acyl.
     2
                                  (iii) R<sub>3</sub> is 1 of the following:
    3
                                                    (A) = 0.
    4
                                                    (B) R3-1:R3-2 in which all of the following circumstances exist:
    5
                                                                      (i) R<sub>3-1</sub> is 1 of the following:
    6
                                                                                        (a) -H.
    7
                                                                                        (b) C<sub>1</sub> alkyl or C<sub>2</sub> alkyl.
     8
                                                                      (ii) R<sub>3-2</sub> is 1 of the following:
     9
10
                                                                                        (a) -H.
                                                                                        (b) -O-R<sub>3-3</sub>, in which R<sub>3-3</sub> is 1 of the following:
11
                                                                                                          (i) -H.
12
                                                                                                          (ii) C<sub>1</sub> alkyl, C<sub>2</sub> alkyl, or C<sub>3</sub> alkyl.
13
                                                                                                          (iii) C<sub>1</sub> acyl, C<sub>2</sub> acyl, C<sub>3</sub> acyl, or C<sub>4</sub> acyl.
14
                                                                                                                                                                                                                                                      (iv) R4 is 1 of the following:
15
                                                                                                                                                                                                                                                      (A) -H.
16
                                                                                                                                                                                                                   (B) -OH.
17
                                                                                                                                                                                                                 Wild Stage to the Stage 
                                  (v) R5 is 1 of the following:
18
                                                                                                                                                                                                                   and the fact that the second
19
                                                     (A) -H.
                                                                                                                                                                                                                                                             1.- 1.-1
20
                                                     (B) -CH<sub>3</sub>.
```

1 (l) Any compound of the formula

2

-

- 5 in which all of the following circumstances exist:
- 6 (i) R₁ is 1 of the following:
- 7 (A) -H.
- 8 (B) C₁ alkyl, C₂ alkyl, or C₃ alkyl.
- 9 (C) C₁ acyl, C₂ acyl, C₃ acyl, or C₄ acyl.
- 10 (D) -CH2-CH=CH2.
- 11 (E) cyclopropylmethyl.
- 12 (ii) R2 does not exist or is 1 of the following:
- 13 (A) C1 alkyl.
- 14 (B) N-oxide.

1	(iii) R3 is 1 of the following:
2	(A) -H.
3	(B) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
4	(C) C ₁ acyl, C ₂ acyl, C ₃ acyl, C ₄ acyl, C ₅ acyl, C ₆ acyl, C ₇ acyl,
5	C8 acyl, C9 acyl, C10 acyl, C11 acyl, C12 acyl, C13 acyl,
6	C ₁₄ acyl, C ₁₅ acyl, C ₁₆ acyl, C ₁₇ acyl, or C ₁₈ acyl.
7	(D) nicotinyl.
8	(E) $-(CH_2)_{n_1}$ -C ₆ H ₅ in which n ₁ is 1, 2, 3, or 4, or a substituent that
9	would be $-(CH_2)_{n_1}$ -C6H5 in which n_1 is 1, 2, 3, or 4 except that 1,
10	2, or 3 of the hydrogen atoms of -C6H5 have been replaced by a
1 1	corresponding number of 1 or more of the following:
12	(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
13	(ii) -F.
1 4	(iii) -Cl.
15	(iv) -CF3.
1 6	(F) $-(CH_2)_{n_2}-N(R_{3-1})(R_{3-2})$ in which all of the following
1 7	circumstances exist:
18	(i) n ₂ is 1, 2, 3, or 4.

(ii) Either of the following circumstances exists:

19

200 C C 301

1	. In 1 - 11	(a)	R3-1	and R ₃₋₂ are the same or different but each is 1 of	
2			the	following:	
3		, "it" s	(i)	-H. · · · · · · · · · · · · · · · · · · ·	
4			(ii)	C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.	
5			(iii)	-CH ₂ -CH=CH ₂ .	
6		(b)	R3-	1 and R3-2 are taken together with the attached	
7			nitro	ogen atom to form a heterocyclic ring that is 1 of the	
8			foll	owing:	
9			(i)	1-pyrrolidinyl.	
10	******	.,'	(ii)	1-piperidinyl.	
1 1		9 9	(iii)	1-morpholinyl.	
12		1 ,	(iv)	1-piperazinyl.	
13			(v)	A substituent that would be 1-piperazinyl except that the	•
1 4				hydrogen atom of the fourth position of 1-piperazinyl is	S
15				replaced by 1 of the following:	
16				(A) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.	
17				(B) 2-pyridinyl, 3-pyridinyl, or 4-pyridinyl.	
18				(C) 2-pyrimidinyl or 4-pyrimidinyl.	
19				(D) -C6H5, or a substituent that would be -C6H5 excep	t
20				that 1, 2, or 3 of the hydrogen atoms of -C6H5 have	Э

1	been replaced by a corresponding number of
2	more of the following:
3	(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
4	(ii) -F.
5	(iii) -Cl.
6	(iv) -CF3.
7	(iv) R4 is 1 of the following:
8	(A) -H.
9	(B) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
10	(C) C ₁ acyl, C ₂ acyl, C ₃ acyl, C ₄ acyl, C ₅ acyl, C ₆ acyl, C ₇ acyl,
1 1	C8 acyl, C9 acyl, C10 acyl, C11 acyl, C12 acyl, C13 acyl,
1 2	C ₁₄ acyl, C ₁₅ acyl, C ₁₆ acyl, C ₁₇ acyl, or C ₁₈ acyl.
13	(D) nicotinyl.
14	
1 5	
16	
17	
18	
19.	and the first of the first of the second of
•	· _ · y · · ·

(· .

or;

:

1 (m) Any compound of the formula

3

3

4

- in which all of the following circumstances exist:
- 5 (i) R₁ is 1 of the following:
- 6 (A) -H.
- 7 (B) C₁ alkyl, C₂ alkyl, or C₃ alkyl.
- 8 (C) C₁ acyl, C₂ acyl, C₃ acyl, or C₄ acyl.
- 9 (D) -CH2-CH=CH2.
- 10 (E) cyclopropylmethyl.
- 11 (ii) R2 is 1 of the following:
- 12 (A) -H.
- 13 (B) C₁ alkyl, C₂ alkyl, or C₃ alkyl.

1	(C)	C ₁ acyl, C ₂ acyl, C ₃ acyl, C ₄	acyl, C5 acyl, C6 acyl, C7 acyl,)
2		C8 acyl, C9 acyl, C10 acyl,	C ₁₁ acyl, C ₁₂ acyl, C ₁₃ acyl,	
3		C ₁₄ acyl, C ₁₅ acyl, C ₁₆ acyl, C ₁	7 acyl, or C ₁₈ acyl.	
4	(D)	nicotinyl.		
5	(E)	$-(CH2)_{n_1}-C_6H_5$ in which n_1 is	1, 2, 3, or 4, or a substituent that	
6		would be $-(CH_2)_{n_1}$ -C6H5 in whi	ich n ₁ is 1, 2, 3, or 4 except that 1,	
7		2, or 3 of the hydrogen atoms of	f -C6H5 have been replaced by a	
8		corresponding number of 1 or me	ore of the following:	
9		(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alk	cyl.	
10		(ii) -F.	a	
11		(iii) -Cl.		
12		(iv) -CF3.		
13	(F)	$-(CH_2)_{n_2}-N(R_{2-1})(R_{2-2})$	in which all of the following	
14		circumstances exist:		
1 5		(i) n ₂ is 1, 2, 3, or 4.		
16		(ii) Either of the following circu	mstances exists:	
17		(a) R ₂₋₁ and R ₂₋₂ are the	same or different but each is 1 of	
18		the following:		
19		(i) -H.		
20		(ii) C1 alkyl, C2 alkyl,	or C3 alkyl.	

1		(iii) -CH2-CH=CH2.
2	(b)	R ₂₋₁ and R ₂₋₂ are taken together with the attached
3		nitrogen atom to form a heterocyclic ring that is 1 of the
4		following:
5		(i) 1-pyrrolidinyl.
6		(ii) 1-piperidinyl.
7		(iii) 1-morpholinyl.
8		(iv) 1-piperazinyl.
9		(v) A substituent that would be 1-piperazinyl except that
10		the hydrogen atom at the fourth position of
11		1-piperazinyl is replaced by 1 of the following:
1 2		(A) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
13		(B) 2-pyridinyl, 3-pyridinyl, or 4-pyridinyl.
14		(C) 2-pyrimidinyl or 4-pyrimidinyl.
1 5		(D) -C6H5, or a substituent that would be -C6H5
16		except that 1, 2, or 3 of the hydrogen atoms of
17		-C6H5 have been replaced by a corresponding
18		number of 1 or more of the following:
19		(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
20		(ii) -F.

1 (iii) -Cl.

2 (iv) -CF3.

- 3 (iii) R3 is 1 of the following:
- 4 (A) -H.
- 5 (B) C₁ alkyl, C₂ alkyl, or C₃ alkyl.
- 6 (C) -O-R₃₋₁ in which R₃₋₁ is 1 of the following:
- 7 (i) -H.

9

12

8 (ii) C₁ alkyl, C₂ alkyl, or C₃ alkyl.

10 (n) Any compound of the formula

 $\begin{array}{c|c}
R_1 & R_2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\
 & |^2 \\$

- in which all of the following circumstances exist:
- 14 (i) R₁ is 1 of the following:
- 15 (A) -H.
- 16 (B) -O-R₁₋₁ in which R₁₋₁ is 1 of the following:

1	(i) -H.
2	(ii) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
3	(iii) C1 acyl, C2 acyl, C3 acyl, C4 acyl, C5 acyl, C6 acyl, C7 acyl,
4	C8 acyl, C9 acyl, C10 acyl, C11 acyl, C12 acyl, C13 acyl,
5	C ₁₄ acyl, C ₁₅ acyl, C ₁₆ acyl, C ₁₇ acyl, or C ₁₈ acyl.
6	(ii) R2 is 1 of the following:
7	(A) -H.
8	(B) C ₁ alkyl.
9	(iii) Either of the following circumstances exists:
10	(A) Both of the following circumstances exist:
1 1	(i) R3 is 1 of the following:
1 2	(a) -H.
13	(b) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
1 4	(c) -CH ₂ -CH=CH ₂ .
1 5	(ii) R4 is 1 of the following:
16	(a) -H.
17	(b) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
18	(c) -CH ₂ -CH=CH ₂ .
19	(d) -OH.

1	(B) R3 and R4 are taken together with the attached nitrogen atom to
2	form a heterocyclic ring that is 1 of the following:
3	(i) 1-pyrrolidinyl.
4	(ii) 1-piperidinyl.
5	(iii) 1-morpholinyl.
6	(iv) 1-piperazinyl.
7	(v) A substituent that would be 1-piperazinyl except that the
8	hydrogen atom at the fourth position of 1-piperazinyl is
9	replaced by 1 of the following:
10	(a) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
1 1	(b) 2-pyridinyl, 3-pyridinyl, or 4-pyridinyl.
12	(c) 2-pyrimidinyl or 4-pyrimidinyl.
13	(d) -C6H5, or a substituent that would be -C6H5 except that
1 4	1, 2, or 3 of the hydrogen atoms of -C6H5 have been
15	replaced by a corresponding number of 1 or more of the
16	following:
17	(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
1 8	(ii) -F.
19	(e) -Cl.
20	(f) -CF3.

(', s

2 (o) Any compound of the formula

3

4

- 5 in which all of the following circumstances exist:
- 6 (i) Both of the following circumstances exist:
- 7 (A) R₁, R₂, R₃, and R₄ are the same or different but each is 1 of the
- 8 following:
- 9
- (i) -H.
- 10
- (ii) -F.

11

(iii) -Cl.

12

(iv) -Br.

13

(v) -CF3.

14

(vi) C₁ alkyl, C₂ alkyl, or C₃ alkyl.

15

(vii) -CH2-CH=CH2.

16

(viii) -O-R₁₋₁ in which R₁₋₁ is 1 of the following:

1	(a) -H.
2	(b) C ₁ alkyl or C ₂ alkyl.
3	(c) C ₁ acyl, C ₂ acyl, or C ₃ acyl.
4	(B) At least 1 of R ₁ , R ₂ , R ₃ , or R ₄ is -H.
5	(ii) R5 and R6 are the same or different but each is 1 of the following:
6	(A) -H.
7	(B) C ₁ alkyl.
8	(iii) Either of the following circumstances exists:
9	(A) Both of the following circumstances exist:
10	(i) R7 is 1 of the following:
11	(a) -H.
12	(b) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
13	(c) -CH ₂ -CH=CH ₂ .
14	(d) -OH.
15	(ii) R8 is 1 of the following:
16	(a) -H.
17	(b) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
18	(c) -CH ₂ -CH=CH ₂ .
19	(B) R7 and R8 are taken together with the attached nitrogen atom to
20	form a heterocyclic ring that is 1 of the following:

1	(i)	1-py	rrolidinyl.
2	(ii)	1-pip	eridinyl.
3	(iii)	1-mc	orpholinyl.
4	(iv)	1-pip	erazinyl.
5	(v)	A su	bstituent that would be 1-piperazinyl except that the
6		hydr	ogen atom at the fourth position of 1-piperazinyl is
7		repla	ced by 1 of the following:
8		(a)	C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
9		(b)	2-pyridinyl, 3-pyridinyl, or 4-pyridinyl.
10		(c)	2-pyrimidinyl or 4-pyrimidinyl.
11		(d)	-C6H5, or a substituent that would be -C6H5 except
1 2			that 1, 2, or 3 of the hydrogen atoms of -C6H5 have
1 3		7	been replaced by a corresponding number of 1 or
1 4			more of the following:
15			(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
16			(ii) -F.
17			(iii) -Cl.
1 8			(iv) -CF3.
19			

1 (p) Any compound of the formula

2

- 4 in which all of the following circumstances exist:
- 5 (i) R₁ is 1 of the following:
- 6 (A) -H.
- 7 (B) -O-R₁₋₁ in which R₁₋₁ is 1 of the following:
- 8 (i) -H.
- 9 (ii) -P(O)(OH)2.
- 10 (iii) C₁ alkyl, C₂ alkyl, or C₃ alkyl.
- 1 1 (iv) C₁ acyl, C₂ acyl, C₃ acyl, or C₄ acyl.
- 12 (ii) Both of the following circumstances exist:
- 13 (A) R2 is 1 of the following:
- 14 (i) -H.
- 15 (ii) -O-R₂₋₁ in which R₂₋₁ is 1 of the following:
- 16 (a) -H.

1	(b) $-P(O)(OH)_2$.
2	(c) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
3	(d) C ₁ acyl, C ₂ acyl, C ₃ acyl, or C ₄ acyl.
4	(B) At least 1 of R ₁ or R ₂ is -H.
5	(iii) Either of the following circumstances exists:
6	(A) R3 and R4 are the same or different but each is 1 of the following:
7	(i) -H.
8	(ii) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
9	(iii) -CH2-CH=CH2.
10	(B) R3 and R4 are taken together with the attached nitrogen atom to
11	form a heterocyclic ring that is 1 of the following:
12	(i) 1-pyrrolidinyl.
13	(ii) 1-piperidinyl.
14	(iii) 1-morpholinyl.
15	(iv) 1-piperazinyl.
16	(v) A substituent that would be 1-piperazinyl except that the
17	hydrogen atom at the fourth position of 1-piperazinyl is
18	replaced by 1 of the following:
19	(a) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
20	(b) 2-pyridinyl, 3-pyridinyl, or 4-pyridinyl.

)

(c) 2-pyrimidinyl or 4-pyrimidinyl.

- 3
- 4
- 5
- -
- O
- 9
- 0
- 1 (q) Any compound of the formula
- l **2**
- l **3**
- 14
- l **5**
- 16 (i) R₁ doe
- l 7

- (c) z-pyrimidiliyi of 4-pyrimidiliyi
- (d) -C6H5, or a substituent that would be -C6H5 except that 1, 2, or 3 of the hydrogen atoms of -C6H5 have been replaced by a corresponding number of 1 or more of the following:
 - (i) C₁ alkyl, C₂ alkyl, or C₃ alkyl.
 - (ii) -F.
 - (iii) -Cl.
 - (iv) -CF3.

- R₁ R₂
 - O-CO-C(R₃)₂-O-R₂
- in which all of the following circumstances exist:
 - (i) R₁ does not exist or is 1 of the following:
 - (A) -H.

Ţ	(B) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
2	(C) C ₁ acyl, C ₂ acyl, C ₃ acyl, or C ₄ acyl.
3	(D) -CH ₂ -CH=CH ₂ .
4	(E) $-(CH_2)_{n_1}-R_{1-1}$ in which all of the following circumstances exist:
5	(i) n ₁ is 1, 2, 3, or 4.
6	(ii) R ₁₋₁ is -C ₆ H ₅ , or a substituent that would be -C ₆ H ₅ except
7	that 1, 2, or 3 of the hydrogen atoms of -C6H5 have been
8	replaced by a corresponding number of 1 or more of the
9	following:
10	(a) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
11	(b) -F.
12	(c) -Cl.
13	(d) -CF3.
1 4	(ii) R2 is 1 of the following:
1 5	(A) -H.
16	(B) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
17	(C) -CH2-CH=CH2.
18	(iii) R3 is -C6H5, or a substituent that would be -C6H5 except that 1, 2, or 3
19	of the hydrogen atoms of -C6H5 have been replaced by a corresponding
20	number of 1 or more of the following:

- 1 (A) C₁ alkyl, C₂ alkyl, or C₃ alkyl.
- 2 (B) -F.
- 3 (C) -Cl.
- 4 (D) -CF3.
- 5 (iv) R4 is 1 of the following:
- 6 (A) -H.

- 7 (B) C₁ alkyl, C₂ alkyl, or C₃ alkyl.
- 8 (C) C₁ acyl, C₂ acyl, C₃ acyl, or C₄ acyl.

10 (r) Any compound of the formula

- in which R₁ is 1 of the following:
- 14 (A) -H.
- 15 (B) C₁ alkyl, C₂ alkyl, or C₃ alkyl.
- 16 C1 acyl, C2 acyl, C3 acyl, or C4 acyl.

2 (s) Any compound of the formula

3

4

5

6

- 7 in which R₁ is 1 of the following:
- 8 -
- (A) $-OR_{1-1}$ in which R_{1-1} is 1 of the following:
- 9

(i) -H.

10

(ii) C₁ alkyl, C₂ alkyl, or C₃ alkyl.

11

(iii) C₁ acyl, C₂ acyl, C₃ acyl, or C₄ acyl.

- 12
- (B) -N(R₁₋₂)(R₁₋₃) in which either of the following circumstances
- 13

exists:

1	(i)	R ₁ -2 a	and R ₁₋₃ ar	e the same or	different bu	it each is	s 1 of	the
2		follow	ing:			1 11 12	.j	',`.
3		(a) -H	ł.					
4	-	(b) C	1 alkyl, C2	alkyl, or C3 al	kyl.			
5		(c) -C	CH2-CH=CH	H2.				
6	(ii)	R ₁₋₂ a	and R ₁₋₃ are	e taken togethe	er with the	attached	nitro	gen
7		atom t	o form a he	terocyclic ring	that is 1 of	f the follo	owing	,•
8		(a) 1	pyrrolidiny	1.				
9		(b) 1	piperidinyl	•				
10		(c) 1	morpholiny	/1.		- 4		
11		(d) 1-	piperazinyl	.•				
12		(e) 1	-piperaziny	l, or a sul	bstituent	that w	ould	be
13		1.	piperaziny	l except that	the hydro	gen ator	m at	the
1 4		fo	ourth position	on of 1-piperaz	zinyl is rep	laced by	1 of	the
1 5		fo	ollowing:		- 40			
1 6		(i) C ₁ alkyl	, C ₂ alkyl, or 0	C3 alkyl.			
17		(i	i) 2-pyridi	nyl, 3-pyridiny	yl, or 4-pyr	idinyl.		
18 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2	(i	ii) 2-pyrimi	dinyl or 4-pyr	rimidinyl.	1		

2. 1

1 (iv) -C6H5, or a substituent that would be -C6H5 except

2 that 1, 2, or 3 of the hydrogen atoms of -C6H5

have been replaced by 1 or more of the following:

(A) C₁ alkyl, C₂ alkyl, or C₃ alkyl.

5 (B) -F.

4

8

10

11

6 (C) -Cl.

7 (D) -CF₃.

9 (t) Any compound of the formula

R₁ R₃ R₄ OR₆ R₁₀ R₅ R₈ R₇ R₁₁

- in which all of the following circumstances exist:
- 13 (i) One of the following circumstances exists:
- 1 4 (A) All of the following circumstances exist:

1	(i) R_1 is $R_{1-1}:R_{1-2}$ and R_2 is $R_{2-1}:R_{2-2}$ in which all of the
2	following circumstances exist:
3	(a) One of R ₁₋₁ or R ₁₋₂ is taken together with 1 of R ₂₋₁ or
4	R2-2 to form a double bond between the carbon atoms
5	to which they are attached.
6	(b) The other of R ₁₋₁ or R ₁₋₂ is -H.
7	(c) The other of R2-1 or R2-2 is C1 alkyl, C2 alkyl, or
8	C ₃ alkyl, or -CH ₂ -O-R ₂₋₃ in which R ₂₋₃ is 1 of the
9	following:
10	(i) -H.
11	(ii) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
12	(iii) C ₁ acyl, C ₂ acyl, C ₃ acyl, or C ₄ acyl.
13	(ii) R3 is -H:-H.
14	(iii) R4 is alpha-H.
15	(iv) R5 is beta-H.
16	(B) All of the following circumstances exist:
17	(i) R2 is R2-4:R2-5 and R3 is R3-1:R3-2 in which all of the
18	following circumstances exist:

1	(a) One of R2-4 or R2-5 is taken together with 1 of R3-1 or
2	R ₃₋₂ to form a double bond between the carbon atoms
3	to which they are attached.
4	(b) The other of R2-4 or R2-5 is 1 of the following:
5	(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
6	(ii) -CH2-O-R2-6 in which R2-6 is 1 of the following:
7	(A) -H.
8	(B) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
9	(C) C ₁ acyl, C ₂ acyl, C ₃ acyl, or C ₄ acyl.
10	(c) The other of R ₃₋₁ or R ₃₋₂ is -H.
11	(ii) R ₁ is -H:-H.
1 2	(iii) R4 is alpha-H.
13	(iv) R5 is beta-H.
14	(C) All of the following circumstances exist:
15	(i) R4 and R5 are taken together form a double bond between
16	the carbon atoms to which they are attached.
17	(ii) R ₁ and R ₃ are each-H:-H.
18	(iii) R2 is -H:R2-7 in which R2-7 is 1 of the following:
19	(a) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
20	(b) -CH2-O-R2-8 in which R2-8 is 1 of the following:

1		(i) -H.	
2	3	(ii) C ₁ alkyl, C ₂ alkyl, or	C3 alkyl.
3		(iii) C ₁ acyl, C ₂ acyl, C ₃ a	cyl, or C4 acyl.
4		(D) All of the following circumstances ex	ist:
5		(i) R ₁ is -H:-H.	
6	_1	(ii) R_2 is $=0$.	
7		(iii) R3 is -H:-H.	
8		(iv) R4 is -H.	
9		(v) R ₅ is -H.	
0	(ii)	R6 is 1 of the following:	
1		(A) -H.	
2		(B) C ₁ alkyl or C ₂ alkyl.	
3		(C) C ₁ acyl, C ₂ acyl, or C ₃ acyl.	ie ca
4	(iii)	R7 is 1 of the following:	* 2
5		(A) C ₁ alkyl, C ₂ alkyl, C ₃ alkyl, C ₄	alkyl, C ₅ alkyl, C ₆ alkyl,
6		C7 alkyl, C8 alkyl, C9 alkyl, or C10	alkyl.
7		(B) C ₂ alkenyl, C ₃ alkenyl, C ₄ alkeny	yl, C5 alkenyl, C6 alkenyl,
8		C7 alkenyl, C8 alkenyl, C9 alkenyl, c	or C ₁₀ alkenyl.
9	(iv)	Either of the following circumstances exis	ets:

1		(A)	R8 is R8-1:R8-2 in which both of the following circumstances
2			exist:
3			(i) One of R ₈₋₁ or R ₈₋₂ and R ₉ are taken together to form a
4			heterocyclic ring containing oxygen.
5			(ii) The other of R ₈₋₁ or R ₈₋₂ is C ₁ alkyl.
6		(B)	Both of the following circumstances exist:
7			(i) R9 is 1 of the following:
8			(a) -H.
9			(b) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
10			(c) C ₁ acyl, C ₂ acyl, C ₃ acyl, or C ₄ acyl.
1 1			(ii) R8 is =CH2.
1 2	(v)	R ₁₀	is 1 of the following:
1 3		(A)	-Н.
1 4		(B)	-CO-O-R ₁₀₋₁ in which R ₁₀₋₁ is 1 of the following:
1 5			(i) -H.
16			(ii) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
17	(vi)	R11	is 1 of the following:
18		(A)	-H.
19		(B)	-CO-O-R ₁₁₋₁ in which R ₁₁₋₁ is 1 of the following:
20			(i) -H.

(ii) C₁ alkyl, C₂ alkyl, or C₃ alkyl.

2

1

3 (u) Any compound of the formula

4

5

- 6 in which all of the following circumstances exist:
- 7 (i) R₁ is 1 of the following:
- 8 (A) -H.
- 9 (B) C₁ alkyl, C₂ alkyl, or C₃ alkyl.
- 10 (C) -CH2-CH=CH2.
- 1 1 (D) C₁ acyl, C₂ acyl, C₃ acyl, or C₄ acyl.
- 12 (E) $-(CH_2)_{n_1}-R_{1-1}$ in which both of the following circumstances
- 1 3 exist:
- 1 4 (i) n₁ is 1, 2, 3, or 4.

13 5

:1 1

1 (ii)	R ₁₋₁ is 1 of the following:
2	(a) 2-thiophene.
3	(b) -C6H5, or a substituent that would be -C6H5 except that
4	1, 2, or 3 of the hydrogen atoms of -C6H5 have been
5	replaced by a corresponding number of 1 or more of
6	the following:
7	(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
8	(ii) -F.
9	(iii) -Cl.
10	(iv) -CF3.
11 (F) -C($H)(R_{1-2})-C(H)(R_{1-3})-R_{1-4}$ in which all of the following
12 circ	imstances exist:
1 3 (i)	R ₁₋₂ is 1 of the following:
14 .	(a) -H.
1 5	(b) C ₁ alkyl or C ₂ alkyl.
1 6 (ii)	R ₁₋₃ is 1 of the following:
17	(a) -H.
1 8	(b) C ₁ alkyl or C ₂ alkyl.
19	(c) -OH.
20 (iii)	R ₁₋₄ is 1 of the following:

1		(a)	2-thiophene.		
2		(b)	-C6H5, or a su	bstituent that would b	e -C6H5 except
3			that 1, 2, or 3 o	of the hydrogen atoms	s of -C ₆ H ₅ have
4		, 1	been replaced	by a corresponding	number of 1 or
5			more of the foll	owing:	
6			(i) C ₁ alkyl, C	2 alkyl, or C3 alkyl.	
7			(ii) -F.		45
8			(iii) -C1.		
9			(iv) -CF3.		
10			(v) 4-ethyl-4,5	-dihydro-5-oxo-1H-tet	razol-1-yl.
11	(ii)	R2 is -C6H5, o	or a substituent th	at would be -C6H5 ex	scept that 1, 2, or
1 2		3 of the hyd	rogen atoms of	C-C6H5 have been	replaced by a
13		corresponding	number of 1 or r	nore of the following:	
1 4		(A) C ₁ alkyl,	C2 alkyl, or C3 a	lkyl.	Q,
1 5		(B) -F.			
16		(C) -Cl.		. ·	
17		(D) -CF3.			
18	(iii)	R3 is 1 of the f	following:		•
19		(A) = 0.		*	i,
20		(B) $=$ S.			

1	(iv)	R4 is C1 alkyl, C2 alkyl, C3 alkyl, C4 alkyl, or C5 alkyl or a
2		compound that would be C1 alkyl, C2 alkyl, C3 alkyl, C4 alkyl, or
3		C5 alkyl except that 1 hydrogen atom in the alkyl group has been
4		replaced by -OH.
5	(v)	R5 is 1 of the following:
6		(A) -H.
7		(B) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
8	(vi)	R6 is 1 of the following:
9		(A) -H.
10		(B) -(CH ₂) _{n2} -O-R ₆₋₁ in which both of the following circumstances
1 1		exist:
1 2		(i) n ₂ is 1 or 2.
13		(ii) R ₆₋₁ is 1 of the following:
1 4		(a) -H.
15		(b) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
16		
17		
18		
19		
20		

00684'91*

1 (v) Any compound of the formula

2

- 5 in which all of the following circumstances exist:
- 6 (i) n₁ is 0 or 1.
- 7 (ii) R₁ is $-N(R_{1-1})(R_{1-2})$ in which 1 of the following circumstances
- 8 exists:
- 9 (A) R₁₋₁ and R₁₋₂ are the same or different but each is 1 of the following:
- 11 (i) -H.
- 1 2 (ii) C₁ alkyl, C₂ alkyl, or C₃ alkyl.
- 1 3 (iii) -CH2-CH=CH2.
- 14 (B) R₁₋₁ and R₁₋₂ taken together with the attached nitrogen atom

 form a heterocyclic ring that is 1 of the following:
- 1 6 (i) 1-pyrrolidinyl.
- 17 (ii) 1-piperidinyl.

1	(iii) I-morpholinyl.
2	(iv) 1-piperazinyl.
3	(v) A substituent that would be 1-piperazinyl except that the
4	hydrogen atom at the fourth position of 1-piperazinyl is
5	replaced by 1 of the following:
6	(a) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
7	(b) 2-pyridinyl, 3-pyridinyl, or 4-pyridinyl.
8	(c) 2-pyrimidinyl or 4-pyrimidinyl.
9	(d) -C6H5, or a substituent that would be -C6H5 except that
10	1, 2, or 3 of the hydrogen atoms of -C6H5 have been
1 1	replaced by 1 or more of the following:
1 2	(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
13	(ii) -F.
14	(iii) -Cl.
1 5	(iv) -CF3.
16	(v) 2-thiophene.
17	(iii) R2 is 1 of the following:
1 8	(A) -CN.

- (B) -C6H5, or a substituent that would be -C6H5 except that 1, 2, or 3
 of the hydrogen atoms of -C6H5 have been replaced by a
 corresponding number of 1 or more of the following:
 - (i) C₁ alkyl, C₂ alkyl, or C₃ alkyl.
- 5 (ii) -F.
- 5 (iii) -Cl.
- 7 (iv) -CF3.

0

1

9 (w) Any compound of the formula

$$R_1 - N$$
 N
 R_2

- 2 in which all of the following circumstances exist:
- 3 (i) R₁ is 1 of the following:
- 4 (A) -H.
- 5 (B) C₁ alkyl, C₂ alkyl, or C₃ alkyl.

1	(ii)	R2 is 1 of	the following:	
2		(A) -H.		
3		(B) C ₁ a	lkyl, C2 alkyl, or C3 alkyl.	
4	(iii)	R3 is -($CH_2)_{n1}$ -N(R ₃₋₁)(R ₃₋₂) in	which all of the following
5		circumsta	nces exist:	
6		(A) n ₁ is	1, 2, 3, or 4.	
7		(B) R4 is	1 of the following:	
8		(i)	-Н.	
9		(ii)	C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl	
10		(C) R5 is	s -C(H)(R3-3)-C(H)(R3-4)-R3-	5 in which all of the following
1 1		circu	mstances exist:	
12		(i)	R ₃₋₃ is 1 of the following:	
13			(a) -H.	
1 4			(b) C ₁ alkyl.	
15		(ii)	R3-4 is 1 of the following:	
16			(a) -H.	
17			(b) C ₁ alkyl.	4.
18		(iii)	R ₃₋₅ is -C ₆ H ₅ , or a substituer	nt that would be -C6H5 except
19			that 1, 2, or 3 of the hydroge	n atoms of -C6H5 have been

replaced by a corresponding number of 1 or more of the

2 following:

- (a) C₁ alkyl, C₂ alkyl, or C₃ alkyl.
- 4 (b) -F.

3

7

9

10

11

- 5 (c) -Cl.
- 6 (d) -CF3.

8 (x) Any compound of the formula

- in which all of the following circumstances exist:
- 13 (i) R₁ is 1 of the following:
- 14 (A) -H.
- 15 (B) C₁ alkyl, C₂ alkyl, or C₃ alkyl.

- 1 (ii) R₂ is -C₆H₅, or a substituent that would be -C₆H₅ except that 1, 2, or
- 2 3 of the hydrogen atoms of -C6H5 have been replaced by a
- 3 corresponding number of 1 or more of the following:
- 4 (A) C₁ alkyl, C₂ alkyl, or C₃ alkyl.
- 5 (B) -F.
- 6 (C) -Cl.
- 7 (D) -CF3.

9 (y) Any compound of the formula

N(R₂)(R₃)

1 2

11

8

- in which all of the following circumstances exist:
- 14 (i) R₁ is -C₆H₅, or a substituent that would be -C₆H₅ except that 1, 2, or
- 3 of the hydrogen atoms of -C6H5 have been replaced by a
- 1 6 corresponding number of 1 or more of the following:
- 17 (A) C₁ alkyl, C₂ alkyl, or C₃ alkyl.

1	• .	(B) -F.		,
2	1	(C) -Cl.		
3		(D) -CF3.		- 1 - 4c - 1
4	(ii)	Either of the following circur	mstances exists:	· · · · · · · ·
5		(A) R ₂ and R ₃ are the sa	ame or different but	each is 1 of the
6		following:		
7		(i) -H.		
8		(ii) C ₁ alkyl, C ₂ alkyl,	or C3 alkyl.	
9		(iii) -CH2-CH=CH2.	C	1
10		(B) R ₂ and R ₃ are taken to	gether with the attache	d nitrogen atom to
1 1		form a heterocyclic ring	that is 1 of the following	ng:
1 2		(i) 1-pyrrolidinyl.		
1 3		(ii) 1-piperidinyl.		
1 4		(iii) 1-morpholinyl.		
1 5		(iv) 1-piperazinyl.		
16		(v) A substituent that	would be 1-piperazin	yl except that the
17		hydrogen atom at	the fourth position o	f 1-piperazinyl is
1 8	~ /	replaced by 1 of the	e following:	1. i., i
19		(a) C ₁ alkyl, C ₂ a	lkyl, or C3 alkyl.	·
20		(b) 2-pyridinyl, 3-	-pyridinyl, or 4-pyridin	yl.

1		(c) 2-pyrimidinyl or 4-pyrimidinyl.
2		(d) -C6H5, or a substituent that would be -C6H5 except that
3		1, 2, or 3 of the hydrogen atoms of -C6H5 have been
4		replaced by 1 or more of the following:
5		(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
6		(ii) -F.
7		(iii) -Cl.
8		(iv) -CF3.
9	(iii)	R4 is 1 of the following:
10		(A) -H.
1 1		(B) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
12		(C) -O-R4-1 in which R5 is 1 of the following:
13		(i) -H.
1 4		(ii) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
1 5		(iii) $-N(R4-2)(R4-3)$ in which either of the following
16		circumstances exists:
17	4	(a) R4-2 and R4-3 are the same or different but each is 1 of
18		the following:
19		(i) -H.
20		(ii) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.

1	(iii) -CH2-CH=CH2.(b) R4-2 and R4-3 are taken together with the attached
0	(b) R4-2 and R4-3 are taken together with the attached
2	
3	nitrogen atom to form a heterocyclic ring that is 1 of
4	the following:
5	(i) 1-pyrrolidinyl.
6	(ii) 1-piperidinyl.
7	(iii) 1-morpholinyl.
8	(iv) 1-piperazinyl.
9	(v) A substituent that would be 1-piperazinyl except
0	that the hydrogen atom at the fourth position of
1	1-piperazinyl is replaced by 1 of the following:
2	(A) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
3	(B) 2-pyridinyl, 3-pyridinyl, or 4-pyridinyl.
4	(C) 2-pyrimidinyl or 4-pyrimidinyl.
5	(D) -C6H5, or a substituent that would be -C6H5
6	except that 1, 2, or 3 of the hydrogen atoms of
7	-C6H5 have been replaced by a corresponding
8	number of 1 or more of the following:
9	(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
0	(ii) -F.

1 (iii) -Cl.

2 (iv) -CF3.

4 (z) Any compound of the formula

3

6

7

 R_1 O N R_2

8 in which all of the following circumstances exist:

- 9 (i) R₁ is -C₆H₅, or a substituent that would be -C₆H₅ except that 1, 2, or
- 3 of the hydrogen atoms of -C6H5 have been replaced by 1 or more of
- 1 1 the following:
- 12 (A) C₁ alkyl, C₂ alkyl, or C₃ alkyl.
- 13 (B) -F.
- 14 (C) -Cl.
- 15 (D) -CF3.
- 16 (ii) R2 is 1 of the following:

l		(A) -H.			
2		(B) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.			
3	(iii)	Either of the following circumstances exists:			
1		(A) R3 and R4 are the same or different but e	ach is	1 of th	ne
5		following:			
5		(i) -H.			
7		(ii) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.			
3		(iii) -CH2-CH=CH2.			
•		(B) R3 and R4 are taken together with the attached	nitroger	ı atom	to
0		form a heterocyclic ring that is 1 of the following	g:		
1		(i) 1-pyrrolidinyl.			
2		(ii) 1-piperidinyl.			
3		(iii) 1-morpholinyl.			
4		(iv) 1-piperazinyl.			
5			2		
6					
7					
8			, ·		
0					

(aa) Any compound of the formula

2

3

- 5 in which all of the following circumstances exist:
- 6 (i) R₁ is 1 of the following:
- 7 (A) -H.
- 8 (B) C₁ alkyl, C₂ alkyl, or C₃ alkyl.
- 9 (C) cyclopropyl.
- 10 (D) -CH2-CH=CH2.
- 1 1 (E) -CH2-CH=C(CH3)2.
- 12 (F) -CH2-cyclopropyl.
- 13 (G) -CH2-CH2-CH2-CH2.
- 14 (H) -COO-R₁₋₁ in which R₁₋₁ is 1 of the following:
- 15 (i) -H.

1		(ii) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
2		(iii) -CH2-CF3.
3		(iv) -CH2-CCl3.
4	(ii)	R2 is -COO-R2-1 in which R2-1 is 1 of the following:
5		(A) -H.
6		(B) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
7		(C) -C6H5, or a substituent that would be -C6H5 except that 1, 2, or 3
8)	of the hydrogen atoms of -C6H5 have been replaced by a
9		corresponding number of 1 or more of the following:
0		(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
1		(ii) -F.
2		(iii) -Cl.
3		(iv) -CF3.
4		(v) -O-R ₂₋₂ in which R ₂₋₂ is 1 of the following:
5		(a) -H.
6		(b) C ₁ alkyl or C ₂ alkyl.
7		(c) C ₁ acyl, C ₂ acyl, or C ₃ acyl.
8		(D) -CH2-O-R2-3 in which R2-3 is 1 of the following:
9		(i) -H.
0		(ii) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.

1		(iii) -CO-R ₂₋₄ in which R ₂₋₄ is 1 of the following:
2		(a) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
3		(b) -C6H5, or a substituent that would be -C6H5 except that
4		1, 2, or 3 of the hydrogen atoms of -C6H5 have been
5		replaced by a corresponding number of 1 or more of
6		the following:
7		(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
8		(ii) ~-F.
9		(iii) -Cl.
10		(iv) -CF3.
1 1	(iii)	R3 is 1 if the following:
1 2		(A) -OH.
13		(B) -C6H5, or a substituent that would be -C6H5 except that 1, 2, or 3
1 4		of the hydrogen atoms of -C6H5 have been replaced by a
1 5		corresponding number of 1 or more of the following:
16		(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
17		(ii) -F.
1 8	1	(iii) -Cl.
19		(iv) -CF3.
20		(v) -O-R ₃₋₁ in which R ₃₋₁ is 1 of the following:

1		(a)	-H.		* *,	1.	
2		(b)	C ₁ alkyl o	or C ₂ alkyl.	A		
3		(c)	C ₁ acyl, (C ₂ acyl, or C ₃	acyl.		
4	(C)	-O-CO-R	3-2 in wh	ich R3-2 is 1 o	f the following	•	
5		(i) -H.					
6		(ii) C ₁ a	ılkyl, C2 a	lkyl, or C3 alk	zyl.		
7		(iii) -C6	H5, or a su	ibstituent that v	would be -C6H	5 except that 1, 2	2,
8		or 3	of the hyd	drogen atoms of	of -C6H5 have	been replaced b	У
9		a co	rrespondin	ng number of 1	or more of the	e following:	
. 0		(a)	C ₁ alkyl,	C2 alkyl, or C	C3 alkyl.		
1		(b)	-F.				
2		(c)	-C1.			1	
. 3		(d)	-CF3.			0	
١4		(e)	-O-R3-3	in which R3-3	is 1 of the foll	owing:	
15			(i) -H.				
l 6			(ii) C ₁	alkyl or C2 all	kyl.		
۱7			(iii) C ₁	acyl, C2 acyl,	or C3 acyl.	, i	
18	(D)	-0-C0-C	CH2-CH2-	N(R3-4)(R3-5)) in which eithe	er of the followin	g
19		circumsta	ances exist	s:			

, 1 , 4 , 2

1

(i) R₃₋₄ and R₃₋₅ are the same or different but each is 1 of the following:

3

2

(a) -H.

4

(b) C1 alkyl, C2 alkyl, or C3 alkyl.

5

(c) -CH2-CH=CH2.

6

(ii) R₃₋₄ and R₃₋₅ are taken together with the attached nitrogen atom to form a heterocyclic ring that is 1 of the following:

8

7

(a) 1-pyrrolidinyl.

9

(b) 1-piperidinyl.

10

(c) 1-morpholinyl.

11

(d) 1-piperazinyl.

12

13 (bb) Any compound of the formula

14

2	in wl	nich all of the following circumstances exist:
3	(i)	R ₁ is 1 of the following:
4		(A) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
5		(B) -CO-R ₁₋₁ in which R ₁₋₁ is C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
6	(ii)	R2 would be 4-piperidinyl except that a hydrogen atom at the one
7		position is replaced by $-(CH_2)_{n_1}-C(R_{2-1})(R_{2-2})-R_{2-3}$ and all of the
8		following circumstances exist:
9		(A) n ₁ is 1, 2, or 3.
0		(B) R2-1 and R2-2 are the same or different but each is 1 of the
1		following:
2		(i) -CH ₂ -C ₆ H ₅ .
3		(ii) A substituent that would be -CH2-C6H5 in which 1, 2, or 3
4		of the hydrogen atoms of -C6H5 have been replaced by a
5		corresponding number of 1 or more of the following:
6		(a) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
7		(b) -F.
8		(c) -Cl.
9		(d) -CF3.

0

(C) R₂₋₃ is 1 of the following:

1 (i) -CN.

2 (ii) -COO-R2-4 in which R2-4 is 1 of the following:

3 (a) -H.

5

7

8

9

4 (b) C₁ alkyl, C₂ alkyl, or C₃ alkyl.

6 (cc) Any compound of the formula

 $\begin{array}{c|c}
H \\
N \\
R_1 \\
R_2 \\
H
\end{array}$

- in which all of the following circumstances exist:
- 11 (i) R₁ is 1 of the following:
- 1 2 (A) C₁ alkyl, C₂ alkyl, or C₃ alkyl.
- 13 (B) -CH₂-CH=CH₂.
- 14 (ii) R2 is 1 of the following:
- 15 (A) C₁ alkyl, C₂ alkyl, C₃ alkyl, C₄ alkyl, C₅ alkyl, or C₆ alkyl.

- (B) cycloalkyl.
- (C) -C6H5, or a substituent that would be -C6H5 except that 1, 2, or 3 of the hydrogen atoms of -C6H5 have been replaced by a corresponding number of 1 or more of the following:
 - (i) C₁ alkyl, C₂ alkyl, or C₃ alkyl.
 - (ii) -F.
 - (iii) -Cl.
 - (iv) -CF3.

) (dd) Any compound of the formula

in which all of the following circumstances exist:

- (i) R₁ is 1 of the following:
 - (A) -H.

1		(B) C ₁ acyl, C ₂ acyl, C ₃ acyl, C ₄ acyl, or C ₅ acyl.
2		(C) -CO-C6H5.
3	(ii)	R2 is 1 of the following:
4		(A) -H.
5		(B) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
6	(iii)	R3 is 1 of the following:
7		(A) -H.
8		(B) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.
9	(iv)	R4 is 1 of the following:
10		(A) C ₁ alkyl, C ₂ alkyl, C ₃ alkyl, or C ₄ alkyl.
1 1		(B) -CH2-CH=CH2.
1 2		(C) $-(CH_2)_{n_1}-R_5$ in which both of the following circumstances exist:
1 3		(i) n ₁ is 1, 2, 3, or 4.
1 4		(ii) R5 is 1 of the following:
1 5		(a) cyclopropyl.
16		(b) -C6H5, or a substituent that would be -C6H5 except that
17		1, 2, or 3 of the hydrogen atoms of -C6H5 have been
18		replaced by a corresponding number of 1 or more of
19		the following:
20		(i) C ₁ alkyl, C ₂ alkyl, or C ₃ alkyl.

(ii) -F.

(iii) -Cl.

(iv) -CF3.

(ee) Any compound of the formula

CH-CO-R₂
C₆H₅

- in which all of the following circumstances exist:
 - (i) R₁ is 1 of the following:
- 1 (A) -H.
- 2 (B) C₁ alkyl, C₂ alkyl, or C₃ alkyl.
- 3 (ii) R₂ is C₁ alkyl, C₂ alkyl, or C₃ alkyl.

5

)

5

5

1 (ff) Any compound of the formula

2

3

- 4 in which all of the following circumstances exist:
- 5 (i) R₁ is 1 of the following:
- 6 (A) -H.
- 7 (B) C₁ alkyl, C₂ alkyl, or C₃ alkyl.
- 8 (ii) R2 is C1 alkyl, C2 alkyl, or C3 alkyl.
- 9 (iii) R₃ is -C₆H₅, or a substituent that would be -C₆H₅ except that 1, 2, or
- 3 of the hydrogen atoms of -C6H5 have been replaced by a
- 1 1 corresponding number of 1 or more of the following:
- 12 (A) C₁ alkyl, C₂ alkyl, or C₃ alkyl.
- 13 (B) -F.
- 1 4 (C) -Cl.
- 15 (D) -CF3.

1 (gg) Any compound of the formula

2

3 C₆H₅-CH₂-CO-CH₃.

4

5 (hh) Any salt or stereoisomer of a compound enumerated in subdivisions (a) to (gg).

the transfer of the second

- 6 (2) A PERSON WHO VIOLATES SUBSECTION (1) IS GUILTY OF A
- 7 FELONY, PUNISHABLE BY IMPRISONMENT FOR NOT MORE THAN 15 YEARS,
- 8 OR A FINE OF NOT MORE THAN \$250,000.00, OR BOTH.
- 9 (3) EXCEPT AS AUTHORIZED BY THIS ARTICLE, A PERSON SHALL NOT
- 0 POSSESS ANY SUBSTANCE DESCRIBED IN SUBSECTION (1)(A) TO (HH).
- 1 (4) A PERSON WHO VIOLATES SUBSECTION (3) IS GUILTY OF A
- 2 FELONY, PUNISHABLE BY IMPRISONMENT FOR NOT MORE THAN 4 YEARS,
- 3 OR A FINE OF NOT MORE THAN \$2,000.00, OR BOTH.
- 4 (5) THIS SECTION DOES APPLY TO A SUBSTANCE CLASSIFIED AS A
- 5 SCHEDULE 1, 2, 3, 4, OR 5 CONTROLLED SUBSTANCE.
- 6 (6) THIS SECTION DOES NOT APPLY TO A PERSON WHO
- 7 MANUFACTURES OR DISTRIBUTES A SUBSTANCE IN CONFORMANCE WITH
- 8 AN APPROVED NEW DRUG APPLICATION OR AN EXEMPTION FOR
- 9 INVESTIGATIONAL USE WITHIN THE MEANING OF SECTION 505 OF THE
- 0 FEDERAL FOOD, DRUG, AND COSMETIC ACT, 21 U.S.C. 355. FOR PURPOSES
- 21 OF THIS SECTION, SECTION 505 OF THE FEDERAL FOOD, DRUG, AND
- 22 COSMETIC ACT SHALL BE APPLICABLE TO THE INTRODUCTION OR
- 23 DELIVERY FOR INTRODUCTION OF ANY NEW DRUG INTO INTRASTATE,
- 24 INTERSTATE, OR FOREIGN COMMERCE.
- Sec. 7521. (1) The following property is subject to forfeiture:

- 1 (a) A prescription form, official prescription form, controlled substance,
- 2 an imitation controlled substance, a controlled substance analogue, an
- 3 androgenic anabolic steroid, or a counterfeit androgenic anabolic
- 4 steroid, —which— OR A SUBSTANCE REGULATED UNDER SECTION 7402A(1)(A)
- 5 TO (HH) THAT has been manufactured, CREATED, distributed, DELIVERED,
- 6 dispensed, used, possessed, or acquired in violation of this article or section
- 7 17766a.
- 8 (b) A raw material, product, or equipment of any kind -which- THAT is
- 9 used, or intended for use, in manufacturing, CREATING, compounding,
- 10 processing, delivering, importing, or exporting a controlled substance, a
- 11 controlled substance analogue, an androgenic anabolic steroid, or a
- 12 counterfeit androgenic anabolic steroid, OR A SUBSTANCE REGULATED
- 13 UNDER SECTION 7402A(1) TO (HH) in violation of this article or section
- 14 17766a; or a raw material, product, or equipment of any kind -which
- 15 THAT is intended for use in manufacturing, CREATING, compounding,
- 16 processing, delivering, importing, or exporting an imitation controlled
- 17 substance in violation of section 7341.
- 18 (c) Property -which- THAT is used, or intended for use, as a container
- 19 for property described in subdivision (a) or (b).
- 20 (d) Except as provided in subparagraphs (i) to (iv), a conveyance,
- 21 including an aircraft, vehicle, or vessel used or intended for use, to
- 22 transport, or in any manner to facilitate the transportation, for the purpose
- 23 of sale or receipt of property described in subdivision (a) or (b):
- 24 (i) A conveyance used by a person as a common carrier in the
- 25 transaction of business as a common carrier is not subject to forfeiture

- 1 unless it appears that the owner or other person in charge of the
- 2 conveyance is a consenting party or privy to a violation of this article.
- 3 (ii) A conveyance is not subject to forfeiture by reason of any act or
- 4 omission established by the owner of that conveyance to have been
- 5 committed or omitted without the owner's knowledge or consent.
- 6 (iii) A conveyance is not subject to forfeiture for a violation of section
- 7 7403(2)(c) or (d), section 7404, or section 7341(4).
- 8 (iv) A forfeiture of a conveyance encumbered by a bona fide security
- 9 interest is subject to the interest of the secured party who neither had
- 0 knowledge of nor consented to the act or omission.
- 1 (e) Books, records, and research products and materials, including
- 2 formulas, microfilm, tapes, and data used, or intended for use, in violation
- 3 of this article or section 17766a.
- 4 (f) Any thing of value that is furnished or intended to be furnished in
- 5 exchange for a controlled substance, an imitation controlled substance, an
- 6 androgenic anabolic steroid, or a counterfeit androgenic anabolic steroid,
- 7 OR A SUBSTANCE REGULATED UNDER SECTION 7402A(1)(A) TO (HH) in
- 8 violation of this article or section 17766a that is traceable to an exchange
- 9 for a controlled substance, an imitation controlled substance, an androgenic
- 0 anabolic steroid, or a counterfeit androgenic anabolic steroid, OR A
- 1 SUBSTANCE REGULATED UNDER SECTION 7402A(1) TO (HH) in violation of
- 2 this article or section 17766a, or that is used or intended to be used to
- 3 facilitate any violation of this article or section 17766a including, but not
- 4 limited to, money, negotiable instruments, or securities. To the extent of
- 5 the interest of an owner, a thing of value is not subject to forfeiture under
- 6 this subdivision by reason of any act or omission that is established by the

- 1 owner of the item to have been committed or omitted without the owner's
- 2 knowledge or consent. Any money that is found in close proximity to any
- 3 property that is subject to forfeiture under subdivision (a), (b), (c), (d), or
- 4 (e) shall be presumed to be subject to forfeiture under this subdivision.
- 5 This presumption may be rebutted by clear and convincing evidence.
- 6 (g) Any other drug paraphernalia not described in subdivision (b) or (c).
- 7 (2) As used in this section:
- 8 (a) "Androgenic anabolic steroid" means that term as defined in section
- 9 17766a.
- 10 (b) "Counterfeit androgenic anabolic steroid" means that term as defined
- 11 in section 17766a.
- 12 (c) "Imitation controlled substance" means that term as defined in
- 13 section 7341.
- Sec. 7525. (1) A controlled substance listed in schedule 1 OR A
- 15 SUBSTANCE THAT IS REGULATED UNDER SECTION 7402A(1)(A) TO (HH)
- 16 that is possessed, transferred, sold, or offered for sale in violation of this
- 17 article is contraband and shall be seized and summarily forfeited to this
- 18 state. A controlled substance listed in schedule 1 -which- OR A SUBSTANCE
- 19 THAT IS REGULATED UNDER SECTION 7402A(1)(A) TO (HH) THAT is seized
- 20 or comes into the possession of this state, the owner of which is unknown,
- 21 is contraband and shall be summarily forfeited to this state.
- 22 (2) Species of plants from which controlled substances in schedules 1
- 23 and 2 may be derived which THAT have been planted or cultivated in
- 24 violation of this article, or of which the owner or cultivator is unknown,
- 25 or which THAT are wild growths, may be seized and summarily forfeited
- 26 to this state.

(3) The failure, upon demand by the administrator or its authorized agent, of the person in occupancy or in control of land or premises upon which the species of plants are growing or being stored to produce an appropriate license or proof that he or she is the holder <u>thereof</u> OF THOSE PLANTS, constitutes authority for the seizure and forfeiture of the plants.